Ky
CONCEPTS

application
categories
challenges
deterioration
evoletion
failure curves
history

legacy software
myths

INTRODUCTION TO
SOFTWARE ENGINEERING '

ave you ever noticed how the invention of one technology can have pro-

found and unexpected effects on other seemingly unrelated technologies,
n commercial enterprises, on people, and even on culture as a whole?
This phenomenon is often called “the law of unmfgﬁ&dxcmsequences."

Today, computer software is the single most important technology on the
world stage. And it is also a prime example of the law of unintended conse-
quences, Ng.one in the 1950s could have predicted that software would become
an ixﬁfs\ﬁ‘g%e technology for business, science, and engineering; that software
would enable the creation of new technologies (e.g., génelic engineering) dt(&e@-
tension of existing technologies (e.g., telecommunications), and the demise of
older technologies (e.g., the printing industry); that software would be the driving
force behind the personal computer revolution; that shrink-wrapped software
products would be purchased by consumers in neighborhood malls; that a soft-
ware company would become larger and more influential than the vast majority
of industrial-era companies; that a vast software-driven network called the Inter-
net would evolve and change everything from library research to consumer shop-
ping to the dating habits of young (and not-so-young) adults.

of all kinds: transportation, medical, telecommunications, military, industrial, en-
tertainment, office machines—the list is aimost endless. And if we are to believe the
law of unintended consequences, there are many effects that we cannot yet predict.

i

‘:(.F



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

And, finally, no one could have foreseen that millions of computer programs
would have to be corrected, adapted, and enhanced as time passed and that the bur-
den of performing these “maintenance” activities would absorb more people and
more resources than all work applied to the creation of new software.

As software’s importance has grown, the software community has continually at-
tempted to develop technologies that will make it easier, faster, and less expensive to
build and maintain high-quality computer programs. Some of these technologies are
targeted at a specific application domain (e.g., Web-site design and implementation);
others focus on a technology domain (e.g., object-oriented systems or aspect-oriented
programming); and still others are broad-based (e.g., operating systems such as
LINUX). However, we have yet to develop a software technology that does it all, and
the likelihood of one arising in the future is small. And yet, people bet their jobs, their
security, and their very lives on computer software. It better be right.

This book presents a framework for those who build computer software—people
who must get it right. The framework encompasses a process, a set of methods, and
an array of tools that we call software engineering.

ol of enginwering s fo provid systems and products thal echonce the
s oasiey, sofer, more secure, ond more enjoyable.”

%,
POINT
Software is both o

product and a vehicle
that delivers a product.

Today, software takes on a dual role. It is both a product and a vehicle for delivering
a product. As a product, it delivers the computing potential embodied by computer
hardware or, more broadly, by a network of computers that are accessible by local
hardware. Whether software resides within a cellular phone or operates inside a
mainframe computer, it is an information transformer—producing, managing, ac-
quiring, modifying, displaying, or transmitting information that can be as simple as
a single bit or as complex as a multimedia presentation. As the vehicle for delivering
the product, software acts as the basis for the control of the computer (operating sys-
tems), the communication of information (networks), and the creation and control
of other programs (software tools and environments).

Software delivers the most important product of our time—information. It trans-

_ forms personal data (e.g., an individual’s financial transactions) so that the data can

be more useful in a local context; it manages business information to enhance com-
petitiveness; it provides a gateway to worldwide information networks (e.g., the In-
ternet) and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a span of
little more than 50 years. Dramatic improvements in hardware performance, pro-



Toke 0 look bock ot the -
Metoryory.

Cov=P

If you have some fime,
tuke a look at one or
more of these classic
books. Pay attention to
what these experts got
wrong as they
predicted future events
and technologies. Stay
humble: none of us
can really know the
future of the systems
we build.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 35

found changes in computing architectures, vast increases in memory and storage
capacity, and a wide variety of exotic input and output options have all precipitated
more sophisticated and complex computer-based systems. Sophisticationmom—
plexity can produce dazzling results when a system succeeds, but they can also pose
huge problems for those who must build complex systems.

Popular books published during the 1970s and 1980s provide useful historical in-
sight into the changing perception of computers and software and their impact on
our culture. Osborne [OSB79] characterized a “new industrial revolution.” Toffler
[TOF80} called the advent of microelectronics part of “the third wave of change” in
human history, and Naisbitt [NAI82] predicted the transformation from an industrial
society to an “information society.” Feigenbaum and McCorduck [FEI83] suggested
that information and knowledge (controlled by computers) would be the focal point
for power in the twenty-first century, and Stoll [STO89] argued that the “electronic
community” created by networks and software was the key to knowledge inter-
change throughout the world. All of these writers were correct.

As the 1990s began, Toffler [TOF90] described a “power shift” in which old power
structures (governmental, educational, industrial, economic, and military) disinte-
grate as computers and software lead to a “democratization of knowledge.” Yourdon
[YOU92] worried that U.S. companies might lose their competitive edge in software-
related businesses and predicted “the decline and fall of the American programmer.”
Hammer and Champy [HAM93] argued that information technologies were to play a
pivotal role in the “reengineering of the corporation.” During the mid-1990s, the per-
vasiveness of computers and software spawned a rash of books by “neo-Luddites”
(e.g., Resisting the Virtual Life, edited by James Brook and lain Boal, and The Future
Does Not Compute by Stephen Talbot). These authors demonized the computer, em-
phasizing legitimate concerns but ignoring the profound benefits that have already
been realized [LEV95].

o d lof of things, but most of the things they moke it s

During the later 1990s, Yourdon [YOU96] reevaluated the prospects of the soft-
ware professional and suggested the “the rise and resurrection” of the American pro-
‘grammerA As the Internet grew in importance, Yourdon'’s change of heart proved to
be correct. As the twentieth century closed, the focus shifted once more, this time to
the impact of the Y2K “time bomb.” (e.g., [YOU98a], [KAR99]). Although the dire pre-
dictions of the Y2K doomsayers were overreactions, their popular writings drove
home the pervasiveness of software in our lives.

As the 2000s progressed, Johnson [JOHO1] discussed the power of “emergence”—
a phenomenon that explains what happens when interconnections among relatively
simple entities result in a system that “self-organizes to form more intelligent, more
adaptive behavior.” Yourdon [YOUO2] revisited the tragic events of 9/11 to discuss



36

WebRef

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

the continuing impact of global terrorism on the IT community. Wolfram [WOL02]
presented a treatise on “a new kind of science” that posits a unifying theory based
primarily on sophisticated software simulations. Daconta and his colleagues
[DACO03] discussed the evolution of “the semantic Web” and ways in which it will
change the way people interact across global networks.

re, T a5 the human eye could soe, Saw the vision of the world and ol

Today, a huge software industry has become a dominant factor in the economies
of the industrialized world. The lone programmer of an earlier era has been replaced
by teams of software specialists, each focusing on one part of the technology re-
quired to deliver a complex application. And yet, the questions that were asked of
the lone programmer are the same questions that are asked when modern computer-
based systems are built:'

e Why does it take so long to get software finished?

e Why are development costs so high?

e Why can't we find all errors before we give the software to our customers?
o Why do we spend so much time and effort maintaining existing programs?
e Why do we continue to have difficulty in measuring progress as software is

being developed and maintained?

These questions and many others demonstrate the industry’s concern about soft-
ware and the manner in which it is developed—a concern that has lead to the adop-
tion of software engineering practice.

How should
we define
software?

In 1970, less than 1 percent of the public could have defined what “computer soft-
ware” meant. Today, most professionals and many members of the public at large
feel that they understand software. But do they? '

A textbook definition of software might take the following form: Software is (1) in-
structions (computer programs) that when executed provide desired features, function,
and performance; (2) data structures that enable the programs to adequately manipulate
information; and (3) documents that describe the operation and use of the programs.

1 In an excellent book of essays on the software business, Tom DeMarco [DEM95] argues the coun-
terpoint. He states: “Instead of asking why software costs so much, we need to begin asking what
have we done to make it possible for today’s software to cost so little. The answer to that question
will help us continue the extraordinary level of achievement that has always distinguished the soft-
ware industry.”



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 37

There is no question that more complete definitions could be offered. But we need
more than a formal definition.

To gain an understanding of software (and ultimately an understanding of soft-
ware engineering), it is important to examine the characteristics of software that

n

% make it different from other things that human beings build.( Software is a logical
POINT rather than a physical system element. Therefore, software has characteristics that

Software is are considerably different than those of hardware:

engineered, not

manufactured. 1. Software is developed or engineered; it is not manufactured in the classical sense.

[ S

o,
POINT

Software doesn't wear

out, but it does

deteriorate. 2.

Although some similarities exist between software development and hard-
ware manufacturing, the two activities are fundamentally different. In both
activities, high quality is achieved through good design, but the manufactur-
ing phase for hardware can introduce quality problems that are nonexistent
(or easily corrected) for software. Both activities are dependent on people,
but the relationship between people applied and work accomplished is en-
tirely different (see Chapter 24). Both activities require the construction of a
“product,” but the approaches are different. Software costs are concentrated
in engineering. This means that software projects cannot be managed as if
they were manufacturing projects.

Software doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The relation-
ship, often called the “bathtub curve,” indicates that hardware exhibits rela-
tively high failure rates early in its life (these failures are often attributable to
design or manufacturing defects). Defects are then corrected, and failure rate

Failure curve
for haxdware

Failure rate

Time



38

CHAPTER 1| INTRODUCTION TO SOFTWARE ENGINEERING

Fdailure curves
for software

Cov§

If you want fo reduce
software deterioration,
you'll have fo do
better software design
(Chapters 9-12).

%

POINT
Software engineering
methods strive fo
reduce the magnitude
of the spikes and slope
of the actual curve in
Figure 1.2.

Failure rate

Time

drops to a steady-state level (hopefully, quite low) for some period of time. As
time passes, however, the failure rate rises again as hardware components
suffer from the cumulative affects of dust, vibration, abuse, temperature ex-
tremes, and many other environmental maladies. Stated simply, the hardware
begins to wear out.

Software is not susceptible to the environmental maladies that cause
hardware to wear out. In theory, therefore, the failure rate curve for software
should take the form of the “idealized curve” shown in Figure 1.2. Undiscov-
ered defects will cause high failure rates early in the life of a program. How-
ever, these are corrected (hopefully, without introducing other errors), and
the curve flattens as shown. The idealized curve is a gross oversimplification
of actual failure models (see Chapter 26 for more information) for software.
However, the implication is clear—software doesn’t wear out. But it does de-
teriorate!

This seeming contradiction can best be explained by considering the “ac-
tual curve” in Figure 1.2. During its life,? software will undergo change. As
changes are made, it is likely that errors will be introduced, causing the fail-
ure rate curve to spike as shown in Figure 1.2. Before the curve can return to
the original steady-state failure rate, another change is requested, causing
the curve to spike again. Slowly, the minimum failure rate level begins to
rise—the software is deteriorating due to change.

2 In fact, from the moment that development begins and long before the first version is delivered,
changes may be requested by the customer.



[ /5]
L %
}OINT

Most software
continues to be custom
builr.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 39

Another aspect of wear illustrates the difference between hardware and
software. When a hardware component wears out, it is replaced by a spare
part. There are no software spare parts. Every software failure indicates an
error in design or in the process through which design was translated into
machine-executable code. Therefore, software maintenance involves consid-
erably more complexity than hardware maintenance.

3. Although the industry is moving toward component-based construction, most
software continues to be custom built.

Consider the manner in which the control hardware for a computer-
based product is designed and built. The design engineer draws a simple
schematic of the digital circuitry, does some fundamental analysis to ensure
that proper function will be achieved, and then goes to the shelf where cata-
logs of digital components exist. Each integrated circuit has a part number, a
defined and validated function, a well-defined interface, and a standard set
of integration guidelines. After each component is selected, it can be or-
dered off the shelf.

As an engineering discipline evolves, a collection of standard design
components is created. Standard screws and off-the-shelf integrated circuits
are only two of thousands of standard components that are used by me-
chanical and electrical engineers as they design new systems. The reusable
components have been created so that the engineer can concentrate on the

* truly innovative elements of a design, i.e., the parts that represent some-
thing new. In the hardware world, component reuse is a natural part of the
engineering process. In the software world, it has only begun to be achieved
on a broad scale.

A software component should be designed and implemented so that it can
be reused in many different programs. Modern reusable components encap-
sulate both data and the processing that is applied to the data, enabling the.
software engineer to create new applications from reusable parts.? For exam-
ple, today’s user interfaces are built with reusable components that enable
the creation of graphics windows, pull-down menus, and a wide variety of
interaction mechanisms. The data structures and processing detail required
to build the interface are contained within a library of reusable components
for interface construction.

3 Component-based software engineering is presented in Chapter 30.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

Oneof thomost
comprehensive Kbrories
of shareware /freewore
czn be found ot
sharowars.

. cnet.com,

Today, seven broad categories of computer software present continuing challenges
for software engineers:

System software. System software is a collection of programs written to service
other programs. Some system software (e.g., compilers, editors, and file manage-
ment utilities) processes complex, but determinate,* information structures. Other
systems applications (e.g., operating system components, drivers, networking soft-
ware, telecommunications processors) process largely indeterminate data. In either
case, the systems software area is characterized by heavy interaction with computer
hardware; heavy usage by multiple users; concurrent operation that requires sched-
uling, resource sharing, and sophisticated proces; management; complex data
structures; and multiple external interfaces. ‘

Application software. Application software consists of standalone programs that
solve a specific business need. Applications in this area process business or techni-
cal data in a way that facilitates business operations or management/technical decision-
making. In addition to conventional data processing applications, application
software is used to control business functions in real-time (e.g., point-of-sale trans-
action processing, real-time manufacturing process control).

Engineering/scientific software. Formerly characterized by “number crunch-
ing” algorithms, engineering and scientific software applications range from as-
tronomy to volcanology, from automotive stress analysis to space shuttle orbital
dynamics, and from molecular biology to automated manufacturing. However, mod-
ern applications within the engineering/scientific area are moving away from con-
ventional numerical algorithms. Computer-aided design, system simulation, and
other interactive applications have begun to take on real-time and even system soft-
ware characteristics.

Embedded software. Embedded software resides within a product or system and
is used to implement and control features and functions for the end-user and for the
system itself. Embedded software can perform limited and esoteric functions (e.g.,
keypad control for a microwave oven) or provide significant function and control ca-
pability (e.g., digital functions in an automobile such as fuel control, dashboard dis-
plays, braking systems, etc.).

Product-line software. Designed to provide a specific capability for use by many
different customers, product-line software can focus on a limited and esoteric mar-

4 Software is determinate if the order and timing of inputs, processing, and outputs is predictable.
Software is indeterminate if the order and timing of inputs, processing, and outputs cannot be pre-
dicted in advance. .



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 41

ketplace (e.g., inventory control products) or address mass consumer markets (e.g.,
word processing, spreadsheets, computer graphics, multimedia, entertainment,
database management, personal and business financial applications).

Web-applications. “WebApps,” span a wide array of applications. In their simplest
form, WebApps can be little more than a set of linked hypertext files that present in-
formation using text and limited graphics. However, as e-commerce and B2B appli-
cations grow in importance, WebApps are evolving into sophisticated computing
environments that not only provide standalone features, computing functions, and
content to the end user, but also are integrated with corporate databases and busi-
ness applications.

Artificial intelligence software. Al software makes }Cls\e Qf nonnumerical al-
gorithms to solve complex problems that are not ame able fo computation or
straightforward analysis. Applications within this area include robotics, expert sys-
tems, pattern recognition (image and voice), artificial neural networks, theorem

proving, and game playing.

 “Thergis aocomner that has common sense.”

Millions of software engineers worldwide are hard at work on projects in one or
more of these categories. In some cases, new systems are being built, but in others,
existing applications are being corrected, adapted, and enhanced. It is common for
a young software engineer to work on a program that is older than she is! Past gen-
erations of software people have left a legacy in each of the categories we have dis-
cussed. Hopefully, the legacy left behind by this generation will ease the burden of

future software engineers. And yet, new challenges have appeared on the horizon:
Q( PRI 1}
Ublquxtous computing. The rapid growth of wireless networking may soon lead

to true distributed computing. The challenge for software engineers will be to de-
velop systems and application software that will allow small devices, personal com-
puters, and enterprise system to communicate across vast networks.

Netsourcing. The World Wide Web is rapidly becoming a computing engine as
well as a content provider. The challenge for software engineers is to architect sim-
ple (e.g., personal financial planning) and sophisticated applications that provide
benefit to targeted end-user markets worldwide.

an't always predict, but you can afways prepare.”

Open source. A growing trend that results in distribution of source code for sys-
tems applications (e.g., operating systems, database, and development environ-
ments) so that customers can make local modifications. The challenge for software



42

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

engineers is to build source code that is self-descriptive, but, more importantly, to de-
velop techniques that will enable both customers and developers to know what
changes have been made and how those changes manifest themselves within the
software.

The ‘new economy.” The dot-com insanity that gripped financial markets during
the late 1990s and the bust that followed in the early 2000s have lead many business
people to believe that the new economy is dead. The new economy is alive and well,
but it will evolve slowly. It will be characterized by mass communication and distri-
bution. Andy Lippman [LIP02] notes this when he writes:

We are entering an era characterized by communications among distributed machines
and dispersed people, rather than being mostly about a connection between two individ-
uals or between an individual and a machine. The old approach to telephony was about
“connections to"; the next wave is about “connections among.” Napster, instant messag-
ing, short message systems, and BlackBerries are examples.

The challenge for software engineers is to build applications that will facilitate mass
communication and mass product distribution using concepts that are only now
forming.

Each of these “new challenges” will undoubtedly obey the law of unintended con-
sequences and have effects (for business people, software engineers, and end-users)
that cannot be predicted today. However, software engineers can prepare by instan-
tiating a process that is agile and adaptable enough to accommodate dramatic
changes in technology and business rules that are sure to come in the next decade.

‘wmake g historic ransition from something that is used for analyti fa

What is
legacy

software?

Hundreds of thousands of computer programs fall into one of the seven broad applica-
tion domains—system software, application software, engineering/scientific software,
embedded software, product software, WebApps, and Al applications—discussed in
Section 1.3. Some of these are state-of-the-art software—just released to individuals,
industry, and government. But other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus
of continuous attention and concern since the 1960s. Dayani-Fard and his col-
leagues [DAY99] describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually
modified to meet changes in business requirements and computing platforms. The pro-
liferation of such systems is causing headaches for large organizations who find them
costly to maintain and risky to evolve.



What should
ldoifl
encounter a legacy
system that
exhibits poor
quality?

What types

of changes
are made to
legacy systems?

ConaP

Every software
engineer must
recognize that change
is natural. Don’t fry fo
fight it

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 43
Liu and his colleagues [LIU98] extend this description by noting that “many legacy
systems remain supportive to core business functions and are indispensable to the
business.” Hence, legacy software is characterized by longevity and business
criticality.

1.4.1 The Quality of Legacy Software

Unfortunately, there is one additional characteristic that can be present in legacy
software—poor quality.® Legacy systems sometimes have inextensible designs, con-
voluted code, poor or nonexistent documentation, test cases and results that were
never archived, a poorly managed change history—the list can be quite long. And
yet, these systems support “core business functions and are indispensable to the
business” [LIU98]. What can one do?

The only reasonable answer may be to do nothing, at least until the legacy sys-
tem must undergo some significant change. If the legacy software meets the needs
of its users and runs reliably, it isn't broken and does not need to be fixed. How-
ever, as time passes legacy systems often evolve for one or more of the following
reasons:

e The software must be adapted to meet the needs of new computing environ-
ments or technology.

e The software must be enhanced to implement new business requirements.

e The software must be extended to make it interoperable with more modern
systems or databases.

-
e The software must be re-architected to make it viable within a network
environment.

When these modes of evolution occur, a legacy system must be reengineered (Chap-
ter 31) so that it remains viable into the future. The goal of modern software engi-
neering is to “devise methodologies that are founded on the notion of evolution;”
that is, the notion that “software systems continually change, new software systems
are built from the old ones, and . . . all must interoperate and cooperate with each
other” [DAY99].

1.4.2 Software Evolution

Regardless of its application domain, size, or complexity, computer software will
evolve over time. Change (often referred to as software maintenance) drives this
process and occurs when errors are corrected, when the software is adapted to a
new environment, when the customer requests new features or functions, and when

5 Inthis case, quality is judged based on modern software engineering thinking—a somewhat unfair
criterion since some modern software engineering concepts and principles may not have been well
understood at the time that the legacy software was developed.



B legacy
systems evolve as
time passes?

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

the application is reengineered to provide benefit in a modern context. Sam Williams
[WILO2] describes this when he writes:

As large-scale programs such as Windows and Solaris expand well into the range of 30
to 50 million lines of code, successful project managers have learned to devote as much
time to combing the tangles out of legacy code as to adding new code. Simply put, in a
decade that saw the average PC microchip performance increase a hundredfold, soft-
ware's inability to scale at even linear rates has gone from dirty little secret to an industry-
wide embarrassment.

Over the past 30 years, Manny Lehman [e.g., LEH97a] and his colleagues have per-
formed detailed analyses of industry-grade software and systems in an effort to develop
a unified theory for software evolution. The details of this work are beyond the scope of
this book,® but the underlying laws that have been derived are worthy of note [LEH97b]:

The Law of Continuing Change (1974). E-type systems’ must be continually
adapted, or else they become progressively less satisfactory.

The Law of Increasing Complexity (1974). As an E-type system evolves its
complexity increases unless work is done to maintain or reduce it.

The Law of Self-Regulation (1974). The E-type system evolution process is
self-regulating with distribution of product and process measures close to normal.

The Law of Conservation of Organizational Stability (1980). The average
effective global activity rate in an evolving E-type system is invariant over product
lifetime.

The Law of Conservation of Familiarity (1980). As an E-type system
evolves all associated with it, developers, sales personnel, and users, for example,
must maintain mastery of its content and behavior to achieve satisfactory evolu-
tion. Excessive growth diminishes that mastery. Hence the average incremental
growth remains invariant as the system evolves.

The Law of Continuing Growth (1980). The functional content of E-type
systems must be continually increased to maintain user satisfaction over the sys-
tem’s lifetime.

The Law of Declining Quality (1996). The quality of E-type systems will ap-
pear to be declining unless they are rigorously maintained and adapted to opera-
tional environment changes.

The Feedback System Law (1996). E-type evolution processes constitute
multilevel, multiloop, multiagent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base.

6 The interested reader should see [LEH97a] for a comprehensive discussion of software evolution.
7 E-types systems are software that has been implemented in a real-world computing context and will
therefore evolve over time.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 45

The laws that Lehman and his colleagues have defined are an inherent part of a soft-
ware engineer’s reality. For the remainder of this book, we discuss software process
models, software engineering methods, and management techniques that strive to
maintain quality as software evolves.

The Software Project
Managers Network can
hefp you dispel these
and other myths. It can
be found at
WWWw.spma.com.

Software myths—beliefs about software and the process used to build it—-can be
traced to the earliest days of computing. Myths have a number of attributes that have
made them insidious. For instance, myths appear to be reasonable statements of fact
(sometimes containing elements of truth), they have an intuitive feel, and they are
often promulgated by experienced practitioners who “know the score.”

“In the absence of meaningful standards, a new industry like software comes to depend instead on folkdore.” =~
Tom DeMarco

Today, most knowledgeable software engineering professionals recognize myths
for what théy are—misleading attitudes that have caused serious problems for man-
agers and technical people alike. However, old attitudes and habits are difficult to
modify, and remnants of software myths are still believed.

Management myths. Managers with software responsibility, like managers in
most disciplines, are often under pressure to maintain budgets, keep schedules from
slipping, and improve quality. Like a drowning person who grasps at a straw, a soft-
ware manager often grasps at belief in a software myth, if that belief will lessen the
pressure (even temporarily).

Myth: We already have a book that's full of standards and procedures for
building software. Won't that provide my people with everything they
need to know?

Reality: The book of standards may very well exist, but is it used? Are soft-
ware practitioners aware of its existence? Does it reflect modern soft-
ware engineering practice? Is it complete? Is it adaptable? Is it
streamlined to improve time to delivery while still maintaining a focus
on quality? In many cases, the answer to all of these questions is no.

Myth: If we get behind schedule, we can add more programmers and catch .up
(sometimes called the Mongolian horde concept).

Reality: Software development is not a mechanistic process like manufac-
turing. In the words of Brooks [BRO75]: “Adding people to a late
software project makes it later.” At first, this statement may seem
counterintuitive. However, as new people are added, people who
were working must spend time educating the newcomers, thereby
reducing the amount of time spent on productive development



46 CHAPTER 1

Myth:

Reality:

INTRODUCTION TO SOFTWARE ENGINEERING

effort. People can be added but only in a planned and well-coordinated
manner.

If I decide to outsource the software project to a third party, I can just re-
lax and let that firm build it.

If an organization does not understand how to manage and control
software projects internally, it will invariably struggle when it out-
sources software projects. )

Customer myths. A customer who requests computer software may be a person

at the next desk, a technical group down the hall, the marketing/sales department,

or an outside company that has requested software under contract. In many cases,

the customer believes myths about software because software managers and prac-

e titioners do little to correct misinformation. Myths lead to false expectations (by the
ADVK‘I‘ customer) and, ultimately, dissatisfaction with the developer.

Work very hard to
understond what you Myth:
have to do before you
sturt. You may not be .
able to develop every Reality:
detail, but the more
you know, the less risk
you fake.
Myth:
Reality:

A general statement of objectives is sufficient to begin writing programs—
we can fill in the details later.

Although a comprehensive and stable statement of requirements is
not always possible, an ambiguous statement of objectives is a
recipe for disaster. Unambiguous requirements (usually derived itera-
tively) are developed only through effective and continuous commu-
nication between customer and developer.

Project requirements continually change, but change can be easily ac-
commodated because software is flexible. '

It is true that software requirements change, but the impact of
change varies with the time at which it is introduced. When require-
ment changes are requested early (before design or code has been
started), cost impact is relatively small.2 However, as time passes,
cost impact grows rapidly—resources have been committed, a design
framework has been established, and change can cause upheaval
that requires additional resources and major design modification.

G"v’“" Practitioner’s myths. Myths that are still believed by software practitioners have

Whenever you think
that we don’t have
time for software engr Myth:
negring, ask yourseff, )

will we have fime fo Reality:
do it over again?

been fostered by over 50 years of programming culture. During the early days of soft-
ware, programming was viewed as an art form. Old ways and attitudes die hard.

Once we write the program and get it to work, our job is done.

Someone once said that the sooner you begin writing code, the
longer it’ll take you to get done. Industry data indicate that between

8 Many software engineers have adopted an “agile” approach that accommodates change incre-
mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 4.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 47

60 and 80 percent of all effort expended on software will be ex-
pended after it is delivered to the customer for the first time.
Myth: Until 1 get the program running, I have no way of assessing its quality.
Reality: One of the most effective software quality assurance mechanisms
can be applied from the inception of a project—the formal technical
review. Software reviews (described in Chapter 26) are a “quality fil-

ter” that have been found to be more effective than testing for finding
certain classes of software errors.

Myth: The only deliverable work product for a successful project is the working
program.

Reality: A working program is only one part of a software configuration that
includes many elements. Documentation provides a foundation for
successful engineering and, more importantly, guidance for software
support.

Myth: Software engineering will make us create voluminous and unnecessary
documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about
creating quality. Better quality leads to reduced rework. And reduced
rework results in faster delivery times.

Many software professionals recognize the fallacy of software myths. Regret-
tably, habitual attitudes and methods foster poor management and technical
practices, even when reality dictates a better approach. Recognition of software
realities is the first step toward formulation of practical solutions for software
engineering.

Every software project is precipitated by some business need—the need to correct a
defect in an existing application; the need to adapt a legacy system to a changing
business environment; the need to extend the functions and features of an existing
application; or the need to create a new product, service, or system.

At the beginning of a software engineering project, the business need is often ex-
pressed informally as part of a simple conversation. The conversation presented in
the sidebar (next page) is typical.

With the exception of a passing reference, software was hardly mentioned as part
of the conversation. And yet, software will make or break the SafeHome product line.
The engineering effort will succeed only if SafeHome software succeeds. The market
will accept the product only if the software embedded within it properly meets the
customer’s (as yet unstated) needs. We'll follow the progression of SafeHome soft-
ware engineering in subsequent chapters.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

SAFeEHoME’

" Dject Starts

Meeting room at CPI
lhot makes consumer

manager, product
manager; lee

s this | hea about your folks

the device'

it could ba(b.rg

output without wires.

mmagn‘loa Comalleri, executive

the size of a small matchbook.
kinds; a digital camera,
; Usmg the 802.11b wireless protocol.

2 new generation of products.

msaordwiandweﬂwnnkwovegoto

Sk

Mal: (avoiding o direct ¢c
about our ideg, Lisa.
Lisa: Its a whole new generation of
“home management products.” We.call ‘en
They use the new wireless inferface, provide
homeowners or small business people with
that's controlled by their PC—Home secur
surveillance, appliance and device control.
turn down the home air conditioner while you’
home, that sort of thing. ‘

Lee: (jumping in) Engineering’s done a fec
feasibility study of this idea, Joe. Ifs doable
manufacturing cost. Most hardware is off the.
Software is an issue, but if's nothing that we can’t
Joe: Interesting. Now, | asked about the bottom

Mal: PCs have penetrated 60 p&'cenfofal
in the USA. If we could price this thing ri
killer-App. Nobody else has our wireless
proprietary. We'll have a two-year jump on
competition. Revenue? Maybe as much as $ _
in the second year. '
Joe (smiling): Lef’s take this to the next level m
interested. :

Software has become the key element in the evolution of computer-based systems
and products and one of the most important technologies on the world stage. Over
the past 50 years, software has evolved from a specialized problem solving and in-
formation analysis tool to an industry in itself. Yet we still have trouble developing
high-quality software on time and within budget. Software—programs, data, and
documents—addresses a wide array of technology and application areas, yet all soft-
ware evolves according to a set of laws that have remained the same for over 30
years. The intent of software engineering is to provide a framework for building
higher quality software.

9 The SafeHome project will be used throughout this book to illustrate the inner workings of a proj-

ect team as it builds a software product. The company, the project, and the people are purely ficti-

tious, but the situations and problems are real.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 49

[BRO75] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.

[DACO3] Daconta, M., L. Obrst, and K. Smith, The Semantic Web, Wiley, 2003.

[DAY99] Dayani-Fard, H., et al., “Legacy Software Systems: Issues, Progress, and Challenges,”
IBM Technical Report: TR-74.165-k, April 1999, available at http://www.cas.ibm.com/
toronto/publications/TR-74.165/k/legacy.html.

[DEM95] DeMarco, T., Why Does Software Cost So Much?, Dorset House, 1995.

[FEI83] Feigenbaum, E. A., and P. McCorduck, The Fifth Generation, Addison-Wesley, 1983.

[HAM93] Hammer, M., and J. Champy, Reengineering the Corporation, HarperCollins Publishers,
1993.

[JOHO1] Johnson, S., Emergence: The Connected Lives of Ants, Brains, Cities, and Software, Scrib-
ner, 2001.

[KAR99] Karlson, E., and J. Kolber, A Basic Introduction to Y2K: How the Year 2000 Computer Cri-
sis Affects YOU, Next Era Publications, Inc., 1999.

[LEH97a] Lehman, M., and L. Belady, Program Evolution: Processes of Software Change, Acade-
mic Press, 1997.

[LEH97b] Lehman, M., et al., “Metrics and Laws of Software Evolution—The Nineties View,"” Pro-
ceedings of the 4th International Software Metrics Symposium (METRICS 97), IEEE, 1997, can
be downloaded from http://www.ece.utexas.edu/~perry/ work/papers/feast1 pdf.

[LEV95] Levy, S., “The Luddites Are Back,” Newsweek, July 12, 1995, p. 565.

[LIPO2] Lippman, A., “Round 2.0, Context Magazine, August 2002, http://www.
contextmag.com/.

[LIU98] Liu, K., et al., “Report on the First SEBPC Workshop on Legacy Systems,” Durham Uni-
versity, February, 1998, available at http://www.dur.ac.uk/ CSM/SABA/legacy-wkspl/re-
port.html.

[OSB79] Osborne, A., Running Wild—The Next Industrial Revolution, Osborne/
McGraw-Hill, 1979.

[NAI82] Naisbitt, J., Megatrends, Warner Books, 1982.

[STO89] Stoll, C., The Cuckoo’s Egg, Doubleday, 1989.

[TOF80] Toffler, A., The Third Wave, Morrow Publishers, 1980.

[TOF90] Toffler, A., Powershift, Bantam Publishers, 1990.

[WIL02] Williams, S., “A Unified Theory of Software Evolution,” salon.com, 2002,
http://www.salon.com/tech/feature/2002/04/08/lehman/index.html.

[WOL02] Wolfram, S., A New Kind of Science, Wolfram Media, Inc, 2002.

[YOU92] Yourdon, E., The Decline and Fall of the American Programmer, Yourdon Press, 1992.

[YOU96] Yourdon, E., The Rise and Resurrection of the American Programmer, Yourdon Press,
1996.

[YOU98a] Yourdon, E., and J. Yourdon, Time Bomb 2000, Prentice-Hall, 1998.

[YOU98b] Yourdon, E., Death March Projects, Prentice-Hall, 1999.

[YOU02] Yourdon, E., Byte Wars, Prentice-Hall, 2002.

1.1. Does the definition for software presented in Section 1.2 apply to Web sites? If you an-
swered yes, indicate the subtle difference between a Web site and conventional software, if any.

1.2. Develop your own answers to the questions asked in Section 1.1. Discuss them with your
fellow students.

1.3. Provide a number of examples (both positive and negative) that indicate the impact of soft-
ware on our society. Review one of the pre-1990 references in Section 1.1 and indicate where
the author’s predictions were right and where they were wrong.

1.4. Provide at least five additional examples of how the law of unintended consequences ap-
plied to computer software.



CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

1.5. Select one of the new challenges noted in Section 1.3 (or an even newer challenge that has
arisen since this book was printed) and write a one-page paper that describes the technology
and the challenges it poses for software engineers.

1.6. Describe The Law of Conservation of Familiarity (Section 1.4.2) in your own words.

1.7. Many modern applications change frequently—before they are presented to the end-user
and then after the first version has been put into use. Suggest a few ways to build software to
stop deterioration due to change.

1.8. Peruse the Internet newsgroup comp.risks and prepare a summary of risks to the public that
have recently been discussed. Alternate source: Software Engineering Notes published by the ACM.

1.9. Consider the seven software categories presented in Section 1.3. Can the same approach
to software engineering be applied for each? Explain your answer.

1.10. As software becomes more pervasive, risks to the public (due to faulty programs) become
an increasingly significant concern. Develop a realistic doomsday scenario where the failure of
a computer program could do great harm (either economic or human).

1.11. Describe The Law of Declining Quality (Section 1.4.2) in your own words.

1.12. Describe The Law of Conservation of Organizational Stability (Section 1.4.2) in your own
words.

There are literally thousands of books written about computer software. The vast majority dis-
cuss programming languages or software applications, but a few discuss software itself. Press-
man and Herron (Software Shock, Dorset House, 1991) present an early discussion (directed at
the layman) of software and the way professionals build it. Negroponte's best-selling book (Be-
ing Digital, Alfred A. Knopf, Inc., 1995) provides a view of computing and its overall impact in
the twenty-first century. DeMarco [DEM95] has produced a collection of amusing and insightful
essays on software and the process through which it is developed. Books by Norman (The In-
visible Computer, MIT Press, 1998) and Bergman (Information Appliances and Beyond, Academic
Press/Morgan Kaufmann, 2000) suggest that the widespread impact of the PC will decline as in-
formation appliances and pervasive computing connect everyone in the industrialized world
and almost every “appliance” that they own to a new Internet infrastructure.

Minasi (The Software Conspiracy: Why Software Companies Put Out Faulty Products, How They
Can Hurt You, and What You Can Do, McGraw-Hill, 2000) argues that the “modern scourge” of
software bugs can be eliminated and suggests ways to accomplish this. Compaine (Digital Di-
vide: Facing a Crisis or Creating a Myth, MIT Press, 2001) argues that the “divide” between those
who have access to information resources (e.g., the Web) and those who do not is narrowing as
we move into the first decade of this century.

A wide variety of information sources on software related topics and management are avail-
able on the Internet. An up-to-date list of World Wide Web resources that are relevant to soft-
ware can be found at our Web site:
http://www.mhhe.com/pressman.

10 The Further Readings and Information Sources section presented at the conclusion of each chapter
presents a brief overview of print sources that can help to expand your understanding of the major
topics presented in the chapter. We have created a comprehensive Web site to support Software En-
gineering: A Practitioner’s Approach at hitp://www.mhhe.com/pressman. Among the many topics
addressed within the Web site are chapter-by-chapter software engineering resources to Web-
based information that can complement the material presented in each chapter. An Amazon.com
link to every book noted in this section is contained within these resources.



